
1

Control System Plant Simulator
Users Guide

By Dave Chandler

2

3

Table of Contents
TABLE OF CONTENTS .. 3

1. INTRODUCTION .. 5

1.1 SYSTEM OVERVIEW ... 6
1.2 CONCEPTS AND DEFINITIONS ... 6

2. CSPS OPERATION .. 8

2.1 FRAMEWORK STARTUP ... 8
2.2 PLANTS ... 9

2.2.1 Defining a plant manually... 9
2.2.2 Input and Output Names .. 11
2.2.3 Discrete Systems and Sampling .. 11
2.2.4 Initial Conditions ... 12
2.2.5 Saving and Loading predefined plants .. 12

2.3 PSEUDO PORTS ... 14
2.3.1 Name .. 14
2.3.2 Physical Port Name ... 14
2.3.3 Pseudo port types ... 14

2.3.3.1 Binary Pseudo Ports ... 15
2.3.3.2 Analog Pseudo Ports .. 15

2.3.4 Defining, Saving, and Loading Pseudo Ports ... 15
2.4 LOGGING ... 16

2.4.1 Log Behavior ... 17
2.4.2 Capturing logs to files ... 17

2.5 CONFIGURING PHYSICAL PORT UPDATES .. 17
2.6 RUNNING A SIMULATION (QUICK START GUIDE) ... 19

3. UI DEVELOPMENT ... 20

3.1 INTRODUCTION ... 20
3.2 THE UIWININTERFACE API ... 20

3.2.1 InitDll .. 20
3.2.2 CallStartExecution ... 21
3.2.3 CallStopExecution ... 21
3.2.4 CallIsReadyForExecution ... 21
3.2.5 CallRequestIOUpdate .. 22
3.2.6 CallTerminate.. 22
3.2.7 CallSetPlantStateSpace ... 22
3.2.8 CallSetPlantZPK ... 24
3.2.9 CallSetPlantZPKMatrix .. 25
3.2.10 CallSetPlantTF .. 26
3.2.11 CallSetPlantTFMatrix ... 27
3.2.12 CallSetPlantNonlinear .. 29
3.2.13 CallGetPlant ... 29
3.2.14 CallSavePlant ... 30
3.2.15 CallLoadPlant ... 30
3.2.16 CallClearPlant ... 30
3.2.17 CallSetInitialConditions .. 30
3.2.18 CallSetDiscretizationMethod .. 31
3.2.19 CallSetIOUpdateMethod .. 31

4

3.2.20 CallAddPort .. 32
3.2.21 CallRemovePort .. 32
3.2.22 CallGetPorts ... 33
3.2.23 CallClearPorts ... 33
3.2.24 CallSavePorts ... 33
3.2.25 CallLoadPorts ... 34
3.2.26 CallGetPhysicalPortInfo .. 34
3.2.27 CallSchedulePortActivity .. 34
3.2.28 CallEnableCriticalLogging .. 35
3.2.29 CallDisableCriticalLogging .. 35
3.2.30 CallHasCriticalMsgs.. 35
3.2.31 CallFetchCriticalMsg .. 36
3.2.32 CallEnableInfoLogging ... 36
3.2.33 CallDisableInfoLogging .. 36
3.2.34 CallHasInfoMsgs .. 37
3.2.35 CallFetchInfoMsg ... 37
3.2.36 CallEnableIOLogging .. 37
3.2.37 CallDisableIOLogging ... 38
3.2.38 CallHasIOMsgs ... 38
3.2.39 CallFetchIOMsg .. 38

3.3 INITIALIZING AND USING THE DLL .. 39
3.3.1 C++ User Interfaces ... 39
3.3.2 Visual Basic ... 39

3.4 LOGGING ... 40
3.5 SIMPLEUI .. 40
3.6 EXAMPLEUI ... 41

4. PORTING TO A NEW DATA ACQUISITION DEVICE .. 43

5. PORTING OPERATING SYSTEM ABSTRACTION LAYER .. 44

6. ADDITIONAL TOOLS .. 46

6.1 THE SIMINTERFACE TOOL ... 46
6.1.1 Configuring SimInterface .. 46
6.1.2 Running SimInterface .. 47

6.1.2.1 Manual Mode ... 47
6.1.2.2 Script Mode .. 48

5

1. Introduction

 The Control System Plant Simulator (CSPS) is a plant simulation framework

designed to allow users to launch simulations of plants that respond to real digital and

analog input. The plants defined by the user operate as part of a Hardware-In-The-Loop

simulation. That is, a computer running the Control System Plant Simulator, connected

to a data acquisition device, behaves to the outside world exactly as the plant it is

simulating does. It has inputs that accept signals in the same format as the real physical

plant, and produces outputs equivalent to those produced by the sensors that sample the

state of the real physical plant. From a black box perspective, the controller can view the

CSPS and the physical plant as equivalent.

Controller

Data Acquisition

Device

PC Running

CSPS

Sensor

Signals

Control

Signals

Acquired

Data

Calculated

Output

Physical Plant

Controller

Control

Signals

Sensors

Physical

Measurements

Sensor

Signals

Control System Plant

Simulator System
Physical Plant System

Figure 1: CSPS and Physical Plant as Black Box Systems

Figure 1 demonstrates this concept. Note that the sensor and control signals appear the

same in both cases to the Controller. By eliminating the physical plant, the CSPS helps

control designers debug their systems at their workstations through the use of a suite of

windows applications. This is particularly useful in educational programs, as the

availability of real plants or simulations of them may be somewhat limited.

6

1.1 System Overview

The CSPS is designed as a modular suite of programs to allow for the greatest

level of flexibility. It is divided into three separate programs that interact with each

other. These process spaces are the Kernel, the Computation Kernel, and the User

Interface. The Kernel is the main entry point for the system, and launches the other two

processes. It stores all configuration information, fields User Interface requests, and

handles communicating with the Windows operating system for file IO. The

Computation Kernel is where the actual simulation is run. It is launched in its own

process space to allow for real time execution in a system such as RTX. It handles

reading from, and writing to the connected data acquisition devices, and simulates the

equation of the configured plant. The User Interface is the process with which end users

interact. Since the CSPS may be configured to simulate a myriad of physical objects, it is

not possible to develop a single user interface for all plants. Some may want a graphical

interface that shows the level of fluid in a tank as it drains and is filled, others may want a

command line based system. Developers may wish to restrict access to the features

provided by the CSPS to just a handful of options, such as a simple start/stop interface

with a plant hard coded in place. To allow this level of flexibility, users are expected to

create their own user interface that interacts with the CSPS Kernel. This is made simple

through the use of the UiWinInterface dynamically linked library.

1.2 Concepts and Definitions

Every plant has inputs and outputs. Inputs are the values that drive the plant.

Controllers provide inputs to plants in order to control their behavior. Outputs are the

values that a controller will monitor to determine the behavior of the plant. An input for

a DC motor would be the voltage applied. An output would be the speed of the motor as

read by a rotational sensor. The CSPS will read inputs from an outside source, and

provide outputs back to that same source.

7

The Control System Plant Simulator manages two different kinds of ports. In this

context, a port is an interface that allows the CSPS to read data from, or write data to a

data acquisition device. The CSPS has what are called physical ports and pseudo ports.

Physical ports are the ports that represent interfaces on a data acquisition device. If a

data device provides two analog inputs and four analog outputs, it is said that the device

has a total of six physical ports. Data read from or written to a physical port is referred to

as physical or raw data, and is the actual data that will be transmitted back to the

connected controller.

Pseudo ports are an abstract concept, internal to the CSPS. Pseudo ports map the

physical ports to the inputs and outputs of a defined plant. They also convert the raw

physical data into values that are meaningful to the plant. These values are referred to as

engineering values. For example, suppose a plant had an input value measured in

radians, and an output value measured in feet per second. A controlling signal enters the

CSPS through a physical port as a voltage reading. The user must define a pseudo port

that connects to this physical port, converts the data from voltage to radians, and provides

it to the proper input of the plant. Another pseudo port must be defined that takes the

speed output from the plant, converts that back into voltage, and provides that voltage to

its connected physical port.

8

Physical Port

Pseudo Port

Plant

Pseudo Port

Physical Port

Input From

Controller

Output To

Controller

Physical Data

Engineering Values

Figure 2: PhysicalPort and PseudoPort Interaction

2. CSPS Operation

The Control System Plant Simulator provides a number of features designed to

help users define and configure their plants as completely as possible. The following

section provides information on how to operate the Control System Plant Simulator.

Note that as the project is provided open source, code will be referenced when necessary

to provide a more complete picture of how the system works.

2.1 Framework Startup

The Kernel is the main process for the Control System Plant Simulator.

Launching the Windows Kernel starts the other processes and initiates the Control

System Plant Simulator. Currently, the CSPS has implemented a Kernel that runs on a

Windows XP operating system. To port the Kernel, a designer must only update the

9

Operating System Abstraction code to use a new operating system. Section 5 provides

information on porting the OS Abstraction code. The Kernel is a console process that

may be launched from a command prompt. It accepts two command line arguments to

indicate which user interface and which computational kernel to launch. Specify the

arguments as follows:

CSPS_W32_Kernel.exe ui <user interface process name> comp <computation kernel>

 Note that both „ui‟ and „comp‟ are tags required to indicate that a User Interface

or Computation Kernel are being specified. If „ui‟ or „comp‟ are not provided, the system

defaults to the supplied Windows Computation Kernel, and the ExampleUI Visual Basic

GUI. This command line can be captured in a windows short cut to allow users quick

access to the CSPS using specialized user interfaces.

2.2 Plants

Users must define a plant before simulation may begin. There are a number of ways

a plant may be manually entered into the system. Plants may be saved to or loaded from

files as well.

2.2.1 Defining a plant manually

A plant may be defined by any of the following methods, though the preferred

method is as a set of State Space Matrices.

10

 As a set of State Space matrices. State space matrices describe the plant

according to the following equations:

Where x is the state vector, u is the input vector, y is the output vector, A

is the state matrix, B is the input matrix, C is the output matrix, and D is

the feedthrough matrix.

 As a transfer function defined by numerator and denominator. A transfer

function is the ratio of the Laplace transform of the output or response

function to the Laplace transform of the input or driving function, defined

as follows:

 As a matrix of numerator/denominator defined transfer functions.

Transfer functions are limited to describing the relationship between one

input and one output. A matrix of transfer functions, where the columns

represent the inputs and the rows represent the outputs may be used for

Multiple Input Multiple Output (MIMO) systems.

 As a transfer function defined by a set of zeros and poles (with gain).

Poles and zeros are values that would cause a transfer function to be equal

to 0, or undefined for a particular point. In the following equation:

 K represents the gain, a represents the set of poles, and b represents the set

of zeros.

 As a matrix of zero-pole-gain defined transfer functions. Like

numerator/denominator defined transfer functions, zero-pole-gain transfer

11

functions can only associate one input with one output. A matrix of these

transfer functions may be used instead.

 As a set of nonlinear equations. Nonlinear equations are equations for

which the principle of superposition does not apply. These include

equations such as the following:

 The user may define a number of these nonlinear equations to define a

plant.

It is the responsibility of the user interface designer to determine exactly how to

collect the data needed to define a plant by any of these methods. See section 3 on UI

Development for information on the functions provided to define a plant manually.

2.2.2 Input and Output Names

The inputs and outputs of a plant are named. These names are used to connect

pseudo ports (section 2.3) to the inputs and outputs of the plant. Pseudo ports connect the

inputs and outputs of the plant to the physical ports provided by the connected data

acquisition device. Pseudo ports are named, and these names must match the names of

the inputs and outputs of the plant in order for the system to operate properly. For

example, a plant that has input „gas‟ and output „speed‟ requires an input pseudo port

named „gas‟ and an output pseudo port named „speed‟ that indicate which physical port is

to be read for the „gas‟ value and which port to write the „speed‟ value to.

2.2.3 Discrete Systems and Sampling

When defining a plant, the user must indicate whether the plant is discrete or not,

and the sampling rate in hertz. Even if the plant is not discrete, a sampling rate must be

provided as the Control System Plant Simulator must evaluate the plant at specific

intervals. The CSPS will discretize continuous plants automatically. Currently the CSPS

provides three methods for discretizing the plant: forward rectangular, backward

12

rectangular, and bilinear. If the user does not specify a discretization method, bilinear is

chosen by default. Forward rectangular is not recommended as it is the least stable

method and often requires high sampling rates for successful transformation.

2.2.4 Initial Conditions

The CSPS provides operations to user interface designers that allow end users to

define initial conditions for the states of a plant. Initial conditions are to be supplied as

engineering value (values with meaning to the plant) floating point parameters.

2.2.5 Saving and Loading predefined plants

 The CSPS may save or load plants to a text file. This file is ASCII and is human-

readable to simplify plant definitions. One does not have to start or run the CSPS in

order to write a plant definition file that may be used later. Plants are only saved in State

Space notation. If the plant was defined by a different method, the CSPS will convert it

to a state space form automatically. The CSPS only supports reading files in state space

form as well. The expected format is as follows:

NUM_STATES

<The number of states>

NUM_INPUTS

<The number of inputs>

NUM_OUTPUTS

<The number of outputs>

INPUT_NAMES

<The names of the input ports – MUST match pseudo ports>

OUTPUT_NAMES

<The names of the output ports – MUST match pseudo ports>

STATE_MATRIX

<State matrix value at position 0,0>

<State matrix value at position 0,1>

13

<State matrix value at position 0,2>

…

<State matrix value at position 0,n>

<State matrix value at position 1,0>

<State matrix value at position 1,1>

…

<State matrix value at position n,n>

INPUT_MATRIX

<Input matrix value at position 0,0>

<Input matrix value at position 0,1>

<Input matrix value at position 0,2>

…

<Input matrix value at position 0,n>

<Input matrix value at position 1,0>

<Input matrix value at position 1,1>

…

<Input matrix value at position n,m>

OUTPUT_MATRIX

<Output matrix value at position 0,0>

<Output matrix value at position 0,1>

<Output matrix value at position 0,2>

…

<Output matrix value at position 0,n>

<Output matrix value at position 1,0>

<Output matrix value at position 1,1>

…

<Output matrix value at position m,n>

FEEDTHROUGH_MATRIX

<Feedthrough matrix value at position 0,0>

<Feedthrough matrix value at position 0,1>

<Feedthrough matrix value at position 0,2>

…

14

<Feedthrough matrix value at position 0,n>

<Feedthrough matrix value at position 1,0>

<Feedthrough matrix value at position 1,1>

…

<Feedthrough matrix value at position m,n>

IS_DISCRETE

<TRUE if the plant is discrete, FALSE otherwise>

SAMPLING_FREQ

<The sampling frequency in hertz>

END

2.3 Pseudo Ports

The user must define a complete pseudo port mapping before simulation can

begin. Pseudo ports connect the inputs and the outputs of the plant to physical ports.

This may be done at run time (if provided by the user interface) manually, or as part of a

file that may be saved and loaded.

2.3.1 Name

Every pseudo port must be given a name. This name indicates which plant input

or output is connected to the pseudo port. In order for a simulation to be initiated, every

plant input and output must be supplied with a pseudo port with a matching name. These

names have a maximum length of 8 characters.

2.3.2 Physical Port Name

Pseudo ports connect plant inputs and outputs to physical ports. Not only does

the name of the pseudo port have to match an input or output of the plant, but the pseudo

port must also name the physical port it is connected to.

2.3.3 Pseudo port types

15

The user may define two different pseudo ports: Binary and Analog. Binary

pseudo ports may be connected to digital physical ports. Analog pseudo ports may be

connected to analog physical ports. Each provides different features for converting the

values provided by the port to data relevant to the plant.

2.3.3.1 Binary Pseudo Ports

Binary pseudo ports map digital physical ports to binary plant inputs and outputs.

Several binary pseudo ports may be connected to the same physical port, dividing it into

smaller sub-ports. For example, a 32 bit digital physical port may be divided into two 16

bit pseudo ports. This is accomplished by indicating the high and low bits of the physical

port a pseudo port maps to.

2.3.3.2 Analog Pseudo Ports

Analog pseudo ports map analog physical ports to plant inputs and outputs. Only

one analog pseudo port may map to a physical port. Users may configure analog pseudo

ports to scale the data read to engineering values meaningful to the plant. For example, a

plant may have an input that accepts values between 100 and 500 PSI, with physical data

provided between -10 and +10 volts. The Analog Pseudo Port will scale -10 to 100 and

+10 to 500. All values in between are scaled linearly.

2.3.4 Defining, Saving, and Loading Pseudo Ports

It is the responsibility of the User Interface designer to determine how to collect

the above information needed to define a pseudo port, but it is suggested that the UI

provide information about the connected physical ports to help users determine which

ones to connect their pseudo ports to and how to define those connections. Additionally,

pseudo ports may be saved to or read from a file defined as follows:

NUM_PSEUDOPORTS

<Number of Pseudo Ports>

16

PORT_NAME

<The name of port 1>

PHY_PORT_NAME

<The name of the physical port connected to port 1>

IS_BINARY

<TRUE if port 1 is binary, FALSE otherwise>

IS_INPUT

<TRUE if port 1 is an input port, FALSE otherwise>

BINARY_MAX (only for binary ports)

<The highest bit of the physical port that port 1 maps to>

BINARY_MIN (only for binary ports)

<The lowest bit of the physical port that port 1 maps to>

ANALOG_MAX (only for analog ports)

<The engineering value maximum voltage represents>

ANALOG_MIN (only for analog ports)

<The engineering value minimum voltage represents>

PORT_NAME

<The name of port 2>

…

END

2.4 Logging

The CSPS provides three different log systems: Informational logs, Critical logs,

and IO logs. Informational log messages provide basic system information such as

“Simulation Started”, “Simulation Stopped”, and “Plant Configured”. Critical logs

provide error messages, and should not be ignored. Examples of critical log messages

include “Invalid Plant Configuration” “Missed Deadline” and “Failure to start

simulation”. IO log messages contain the current values provided as inputs and

calculated outputs of the plant in engineering values. The current elapsed time is

included as well.

17

2.4.1 Log Behavior

All log messages are passed back to the user interface. It is up to the user

interface designer to determine what to do with them. It is highly recommended, at a

minimum, to display all critical log messages. Critical log messages will always be

displayed in the console that launched the Control System Plant Simulator, but should be

prominently displayed whenever possible.

The user may configure how often IO log messages are generated. The three

options are push all IO log messages, push IO log messages periodically, and pull IO log

messages. When the push all option is selected (as it is by default) every time the plant is

evaluated an IO log message is generated and sent to the Kernel. This may be dangerous

as this happens during simulation time. It may impact simulation performance. Push

periodic sends IO messages after a specified number of plant evaluations. Pull only

sends IO messages when requested by the user.

2.4.2 Capturing logs to files

The CSPS has the ability to capture any of the three logs to individual data files.

Informational and critical log messages get appended to the end of their specified files,

one line at a time. IO logging is provided as a comma delimited file with each line

consisting of the current elapsed time in seconds, the input port values, and the output

port values, with an empty column in between the inputs and outputs. It is recommended

that the IO logs are saved as .csv files, as this allows the file to be imported directly to

Windows Excel.

2.5 Configuring Physical Port Updates

Physical ports are not read or written to as part of the plant evaluation process.

There is no guarantee of how long such a read or write will take, especially considering

the fact that the CSPS supports and encourages the addition of support for other data

acquisition devices. Instead all values are read or written to a cache. Periodically this

18

cache is updated with values from physical ports for input parameters, and is used to

update physical ports for output parameters.

 Users may schedule update periods on a port by port basis. The CSPS

provides operations to the user interface designer that allow physical port updates to be

scheduled by simply providing the period in milliseconds and the name of the physical

port to update. Update periods do not need to match or overlap, but can if the user

desires.

19

2.6 Running a Simulation (Quick start guide)

The following are the steps necessary to run a complete simulation:

 Make all necessary hardware connections. The data acquisition device should be

connected to the system and to the target controller before launching the CSPS.

 Launch the CSPS by executing the Kernel executable on the command line with

arguments indicating which user interface and Computation Kernel to launch as

well.

 Load or define a plant.

 Load or define a set of pseudo ports that map every input and output of the plant

to physical ports.

 Set initial conditions (optional)

 Schedule physical port updates (optional).

 Start any desired logging (optional)

 Start the simulation.

 When finished, stop the simulation.

Send the terminate command as described in 3.2.6 to the CSPS – Note that this

command MUST be sent to properly shut down the CSPS. User Interface

Designers should provide it as part of any shut down code in the UI.

20

3. UI Development

A significant portion of the work associated with setting up the Control System

Plant Simulator is developing a User Interface for your plant. This section outlines how

to build your own user interface that can interface directly with the CSPS.

3.1 Introduction

Users are expected to develop their own user interface processes specifically for

their plants. Two simple user interfaces are provided, but these merely provide access to

all of the functions provided by the Control System Plant Simulator. They are bulky and

provide for the most general of interactions. Plant specific details (such as graphic

representation of the state of the plant) simply do not exist, and access to every possible

option creates for a cluttered and unwieldy interface. Still, they serve their purpose: To

provide an example of how to create a User Interface and how to properly call the

operations in the CSPS API. Users should employ these interfaces as a starting point for

developing their own interfaces with features designed specifically for the target plant.

3.2 The UiWinInterface API

The CSPS suite includes an API that any user interface can use in order to send

commands to the kernel. This API is provided by the UiWinInterface.dll dynamically

linked library. Note that while all file names are assumed to be relative to the directory

the CSPS executables are located in, the user may provide a fully qualified pathname

such as C:\CSPS\Scripts\filename.txt as well. The API allows the user access to the

following function calls:

3.2.1 InitDll

Signature: void InitDll()

Description: The InitDll operation must be called after the library has been

linked into the user interface, but before any other operations may be

21

called. It initializes the classes in the dll and starts the threads that the dll

uses to handle the interface communications.

Arguments: none

Return Value: none

3.2.2 CallStartExecution

Signature: bool CallStartExecution()

Description: The CallStartExecution sends a command to the CSPS to start

execution of the simulation. A valid plant and pseudo port mapping must

have been established for this call to be successful.

Arguments: none

Return Value: Returns true if the system was able to start execution, false

otherwise.

3.2.3 CallStopExecution

Signature: bool CallStopExecution()

Description: The CallStopExecution sends a command to the CSPS to stop

execution of the simulation.

Arguments: none

Return Value: Returns true if the system was able to stop execution, false

otherwise.

3.2.4 CallIsReadyForExecution

Signature: bool CallIsReadyForExecution()

Description: The CallIsReadyForExecution operation sends a command to the

CSPS that will cause it to determine if all of the prerequisites for system

execution have been met.

Arguments: none

22

Return Value: Returns true if the CSPS is able to initiate simulation, and false if

it cannot.

3.2.5 CallRequestIOUpdate

Signature: bool CallRequestIOUpdate()

Description: The CallRequestIOUpdate operation sends a command to the CSPS

that will cause it to generate an IO update log message.

Arguments: none

Return Value: Returns true if an IO update log message was generated, false if it

was not.

3.2.6 CallTerminate

Signature: void CallTerminate()

Description: The CallTerminate operation sends a command to the CSPS that

will cause it to terminate all operation and shut down.

Arguments: none

Return Value: none

3.2.7 CallSetPlantStateSpace

Signature: bool CallSetPlantStateSpace(StateSpace& ss)

Description: The CallSetPlantStateSpace operation sets the plant configuration

using state space notation. The UI designer must fill a StateSpace

structure that contains two dimensional arrays to store the state space

matrices themselves (The State, Input, Output, and Feedthrough matrices),

information indicating the number of inputs, outputs, and states, the names

of the inputs and outputs, whether the plant is discrete or not, and the

frequency at which to sample the plant.

23

Once the UI has collected this data it sends it to the CSPS framework by

packaging it in a StateSpace structure and passes it as the ss parameter of

this function.

For example, if the user wishes to configure a plant with the following

state space matrices

0

10

5.0

0

5.25.1

10

D

C

B

A

 then the User Interface must provide a state space structure with the matrix

values set as follows:

 ss.stateMatrix[0][0] = 0;

 ss.stateMatrix[0][1] = 1;

 ss.stateMatrix[1][0] = -1.5;

 ss.stateMatrix[1][1] = -2.5;

 ss.inputMatrix[0][0] = 0;

 ss.inputMatrix[1][0] = 0.5;

 ss.outputMatrix[0][0] = 0;

 ss.outputMatrix[0][1] = 1;

 ss.feedthroughMatrix[0][0] = 0;

See the provided ExampleUI and SimpleUI source code for more

examples of how to fill the state space structure.

Arguments:

 ss – a reference to a StateSpace structure that contains information needed

to define a plant. This includes the state space equations, sampling rate,

and the discrete or continuous nature of the plant.

24

Return Value: Returns true if the plant is established properly, and false if the

call fails.

3.2.8 CallSetPlantZPK

Signature: bool

CallSetPlantZPK(TF_PoleZeroGain_Descriptor& zpk)

Description: The CallSetPlantZPK operation sets the plant configuration using a

transfer function defined by a set of zeros and poles. The UI Designer

must fill a TF_PoleZeroGain_Descriptor with information about each pole

and zero, the input and output names, whether the plant is discrete or not,

and the frequency at which to sample the plant. Once the UI has collected

this data it sends it to the CSPS framework by packaging it in a

TF_PoleZeroGain_Descriptor structure and passes it as the zpk parameter

of this function.

 For example, if a user wishes to provide a transfer function defined as

follows

)}31()}{31({

)5.5)(4(
34.7)(

jsjs

ss
sH

 Then they are defining a system with zeros at 4 and -5.5, a pole at -1-3j,

and a pole at -1+3j. These values must be entered into the gain variable,

the poles array, and zeros array of the TF_PoleZeroGain_descriptor

structure as follows:

 zpk.gain = 7.34;

 zpk.poles[0].x = 4;

 zpk.poles[0].j = 0; // no complex part

 zpk.poles[1].x = -5.5;

 zpk.poles[1].j = 0; // no complex part

 zpk.zeros[0].x = -1;

 zpk.zeros[0].j = 3;

25

 zpk.zeros[1].x = -1;

 zpk.zeros[1].j = -3;

See the provided ExampleUI and SimpleUI code for more examples of

how to fill the zero-pole-gain structure.

Arguments:

 zpk – is a reference to a TF_PoleZeroGain_Descriptor structure that

contains information needed to define a plant. This includes the poles and

zeros, the gain, sampling rate, and the discrete or continuous nature of the

plant.

Return Value: Returns true if the plant is established properly, and false if the

call fails.

3.2.9 CallSetPlantZPKMatrix

 Signature: bool CallSetPlantZPKMatrix(

TF_PoleZeroGain_Matrix& zpkMatrix)

Description: The CallSetPlantZPKMatrix operation sets the plant configuration

using a matrix of transfer functions defined by zeros and poles. The

matrix is defined by sets of TF_PoleZeroGain_Descriptor structures

organized in a matrix. The columns of this matrix make up the inputs, and

the rows make up the outputs of the plant.

 For example, if a plant has 3 inputs and 2 outputs the matrix is defined as

follows:

 INPUT 1 INPUT 2 INPUT 3

OUTPUT 1 H11(s) H12(s) H13(s)

OUTPUT 2 H21(s) H22(s) H23(s)

26

where H11 through H23 are transfer functions defined as sets of zero-

pole-gains. H11 relates INPUT 1 to OUTPUT1, H12 relates INPUT 2 to

OUTPUT1, and so on.

See the provided ExampleUI and SimpleUI code for more examples of

how to fill the zpk matrix structure.

Arguments:

 zpkMatrix – A reference to a TF_PoleZeroGain_Matrix structure that

contains information needed to define a plant. It includes a matrix of

transfer functions, with the row of the matrix indicating an output, and the

column of the matrix indicating an input. For example, position 2,3 of the

matrix defines a transfer function that involves input 3 and output 2.

Return Value: Returns true if the plant is established properly, and false if the

call fails.

3.2.10 CallSetPlantTF

Signature: bool CallSetPlantTF(

TF_NumDenom_Descriptor& tf)

Description: The CallSetPlantTF operation sets the plant configuration using a

transfer function defined by two polynomials: a numerator and a

denominator. The UI Designer must fill a TF_NumDenom_Descriptor

with the polynomials that make up the numerator and denominator of the

transfer function, the input and output names, whether the plant is discrete

or not, and the frequency at which to sample the plant. The polynomials

are defined by coefficients, similar to Matlab. Once the UI has collected

this data it sends it to the CSPS framework by packaging it in a

TF_NumDenom_Descriptor structure and passes it as the tf parameter of

this function.

27

 For example, if the user wishes to provide a plant defined by the following

transfer function:

 the user interface would have to fill a TF_NumDenom_Descriptor as

follows

 tf.numerator[0] = 1; // S^3

 tf.numerator[1] = 2; // 2s^2

 tf.numerator[2] = 0; // 0s

 tf.numerator[3] = 4; // 4

 tf.denominator[0] = 1 // s^4

 tf.denominator[1] = 3.3 // 3.3s^3

 tf.denominator[2] = 4 // 4s^2

 tf.denominator[3] = 7 // 7s

 tf.denominator[4] = 12.4 // 12.4

See the provided ExampleUI and SimpleUI code for more examples of

how to fill the TF_NumDenom_Descriptor structure.

Arguments:

 tf – A reference to a TF_NumDenom_Descriptor structure that contains

information needed to define a plant specified by a transfer function. This

includes the numerator and denominator of the transfer function, the

sampling rate, and the discrete or continuous nature of the plant.

Return Value: Returns true if the plant is established properly, and false if the

call fails.

3.2.11 CallSetPlantTFMatrix

Signature: bool CallSetPlantTFMatrix(

TF_NumDenom_Matrix& tfMatrix)

28

Description: The CallSetPlantTFMatrix operation sets the plant configuration

using a matrix of transfer functions defined by transfer functions. The

matrix is defined by sets of TF_NumDenom_Descriptor structures

organized in a matrix. The columns of this matrix make up the inputs, and

the rows make up the outputs of the plant.

For example, if a plant has 3 inputs and 2 outputs the matrix is defined as

follows:

 INPUT 1 INPUT 2 INPUT 3

OUTPUT 1 H11(s) H12(s) H13(s)

OUTPUT 2 H21(s) H22(s) H23(s)

where H11 through H23 are transfer functions defined as numerators and

denominators of polynomials. H11 relates INPUT 1 to OUTPUT1, H12

relates INPUT 2 to OUTPUT1, and so on.

See the provided ExampleUI and SimpleUI code for more examples of

how to fill the transfer function matrix structure.

Arguments:

 tfMatrix – A reference to a TF_NumDenom_Matrix structure that contains

information needed to define a plant. It includes a matrix of transfer

functions, with the row of the matrix indicating an output, and the column

of the matrix indicating an input. For example, position 2,3 of the matrix

defines a transfer function that involves input 3 and output 2.

Return Value: Returns true if the plant is established properly, and false if the

call fails.

29

3.2.12 CallSetPlantNonlinear

Signature: bool CallSetPlantNonlinear(

NonLinear_Descriptor& nonlinearEqs)

Description: The CallSetPlantNonlinear operation sets the plant configuration

using a set of nonlinear equations. These nonlinear equations are defined

by a NonLinear_Descriptor structure. This structure is defined by sets of

Terms. Each term consists of a coefficient and an array of powers for the

variables available in the nonlinear equation. For example, the nonlinear

equation y = x + 2z + 3x
2
z

3
would be defined by 3 terms. The first term

has coefficient 1, and state powers 1 and 0. The second term has

coefficient 2 and state powers 0 and 1. The final term has coefficient 3,

and state powers 2 and 3. Once the UI has collected this data it sends it to

the CSPS framework by packaging it in a NonLinear_Descriptor structure

and passes it as the nonlinearEqs parameter of this function.

See the provided ExampleUI and SimpleUI code for more examples of

how to fill the NonLinear_Descriptor structure.

Arguments:

 nonlinearEqs – A reference to a TF_NonLinear_Descriptor structure that

contains information needed to define a plant. It defines nonlinear

equations as a set of terms and coefficients.

Return Value: Returns true if the plant is established properly, and false if the

call fails.

3.2.13 CallGetPlant

Signature: bool CallGetPlant(StateSpace& ss)

Description: The CallGetPlant operation retrieves the plant that is currently

configured in the CSPS.

Arguments:

30

 ss – A reference to a StateSpace structure. It is an output parameter and

will be populated with the current plant in the CSPS.

Return Value: Returns true if the plant was retrieved successfully, false

otherwise.

3.2.14 CallSavePlant

Signature: bool CallSavePlant(const char* fileName)

Description: The CallSavePlant operation saves the currently specified plant to a

file.

Arguments:

 fileName – The name of the file to save the plant to.

Return Value: Returns true if the plant is saved successfully, false otherwise.

3.2.15 CallLoadPlant

Signature: bool CallLoadPlant(const char* fileName)

Description: The CallSavePlant operation loads a plant from the specified file.

Arguments:

 fileName – The name of the file to load the plant from.

Return Value: Returns true if the plant is loaded successfully, false otherwise.

3.2.16 CallClearPlant

Signature: bool CallClearPlant()

Description: The CallClearPlant operation clears out the currently configured

plant.

Arguments: none.

Return Value: Returns true if the plant is cleared successfully, false otherwise.

3.2.17 CallSetInitialConditions

Signature: bool CallSetInitialConditions(

InitialConditionsWrapper& wrapper)

31

Description: The CallSetInitialConditions operation establishes the initial

conditions for the plant. If this is never called, initial conditions are

assumed to be 0.

Arguments:

 wrapper – A reference to an InitialConditionsWrapper structure. The

InitialConditionsWrapper contains an array of floating point values that

hold the initial conditions of the system.

Return Value: Returns true if the initial conditions were set properly, false

otherwise.

3.2.18 CallSetDiscretizationMethod

Signature: bool CallSetDiscretizationMethod(

long method)

Description: The CallSetDiscretizationMethod operation sets the method by

which continuous plants are turned into discrete ones. Plants are

discretized when simulation is started, so users may alter the discretization

method before or after a plant has been provided to the system, but NOT

during simulation.

Arguments:

 method – a long enumerated value that indicates the method. The current

possible values are:

 0 to indicate the Forward Rectangular method.

 1 to indicate the Backward Rectangular method.

 2 to indicate the Bilinear method.

Return Value: Returns true if the discretization method is set properly. False

otherwise.

3.2.19 CallSetIOUpdateMethod

Signature: bool CallSetIOUpdateMethod(long method,

 int period)

32

Description: The CallSetIOUpdateMethod operation determines how often IO

update messages will be generated.

Arguments:

 method – a long value that indicates the method. The current possible

values are:

 0 to indicate a method where an IO Update is sent every simulation cycle.

 1 to indicate a method where an IO Update is sent every period cycles.

2 to indicate a method where no IO Updates are sent. They must be

requested.

 period – the number of system cycles that must be executed before

generating an IO update. Valid only for PUSH_PERIODIC mode.

Return Value: Returns true if the IO Update method is set properly. False

otherwise.

3.2.20 CallAddPort

Signature: bool CallAddPort(

PseudoPortDescriptor& pseudoPort)

Description: The CallAddPort operation adds a pseudo port to the current

pseudo port mapping.

Arguments:

 pseudoPort – A reference to a PseudoPortDescriptor structure containing

all information needed to establish a pseudo port.

Return Value: Returns true if the port is added successfully, false if the port

addition fails.

3.2.21 CallRemovePort

Signature: bool CallRemovePort(const char* portName)

Description: The CallRemovePort operation removes a pseudo port from the

current port mapping.

Arguments:

33

 portName – the name of the port to remove.

Return Value: Returns true if the port was removed, false otherwise.

3.2.22 CallGetPorts

Signature: bool CallGetPorts(PseudoPortMapping& ports)

Description: The CallGetPorts operation retrieves information about the

complete pseudo port mapping.

Arguments:

 ports – a reference to a PseudoPortMapping structure. This is an output

parameter that will be populated with the necessary information.

Return Value: Returns true if the port mapping was successfully retrieved, false

otherwise.

3.2.23 CallClearPorts

Signature: bool CallClearPorts()

Description: The CallClearPorts operation

Arguments: none.

Return Value: Returns true if the port mapping was successfully cleared, false

otherwise.

3.2.24 CallSavePorts

Signature: bool CallSavePorts(const char* fileName)

Description: The CallSavePorts operation saves the current port mapping to an

ASCII based file.

Arguments:

 fileName – The port mapping will be saved to the file indicated by this file

name. If such a file does not yet exist, a new one will be created. If the

file does exist, it will be overwritten.

34

Return Value: Returns true if the port mapping was successfully saved, false

otherwise.

3.2.25 CallLoadPorts

Signature: bool CallLoadPorts(const char* fileName)

Description: The CallLoadPorts operation loads the port mapping from an

ASCII based file.

Arguments:

 fileName – The port mapping will be loaded from the file indicated by this

file name.

Return Value: Returns true if the port mapping was successfully loaded, false

otherwise.

3.2.26 CallGetPhysicalPortInfo

Signature: bool CallGetPhysicalPortInfo(

PhysicalPortsDescriptor& phyPorts)

Description: The CallGetPhysicalPortInfo operation retrieves information about

the physical ports as established by the PhysicalPortCache.

Arguments:

 phyPorts – A reference to a PhysicalPortsDecriptor. This is an output

parameter and will be populated with the necessary data.

Return Value: Returns true if the physical port information was successfully

retrieved, false otherwise.

3.2.27 CallSchedulePortActivity

Signature: bool CallSchedulePortActivity(

const char* portName,

int period)

35

Description: The CallSchedulePortActivity operation establishes the update

period for a particular physical port. The indicated physical port will be

read from periodically according to the specified length of time.

Arguments:

 portName – The name of the physical port to schedule.

 period – the length of time in milliseconds between updates. Note that no

minimum period is enforced. The user interface designer must take care

not to over burden the system.

Return Value: Returns true if the physical port schedule is set properly, false

otherwise.

3.2.28 CallEnableCriticalLogging

Signature: bool CallEnableCriticalLogging(

const char* fileName)

Description: The CallEnableCriticalLogging operation starts logging critical

messages to a file.

Arguments:

 fileName – The name of the file to save critical messages to.

Return Value: Returns true if the critical log is properly initiated.

3.2.29 CallDisableCriticalLogging

Signature: bool CallDisableCriticalLogging()

Description: The CallEnableCriticalLogging operation stops logging critical

messages to a file.

Arguments: none.

Return Value: Returns true if the critical log is stopped.

3.2.30 CallHasCriticalMsgs

Signature: bool CallHasCriticalMsgs()

36

Description: The CallHasCriticalMsgs operation determines whether any critical

messages have been sent to the user interface or not.

Arguments: none.

Return Value: Returns true if the dll has buffered any critical messages. The

operation returns false if the critical message buffer is empty.

3.2.31 CallFetchCriticalMsg

Signature: bool CallFetchCriticalMsg(MsgType& msg)

Description: The CallFetchCriticalMsg operation retrieves the oldest critical

message in the critical message buffer

Arguments:

 msg – A MsgType struct containing the critical message as it was stored

in the critical message buffer. This is an output parameter and will be

populated by calling the operation.

Return Value: Returns true if the operation successfully retrieves a message.

False otherwise.

3.2.32 CallEnableInfoLogging

Signature: bool CallEnableInfoLogging(

const char* fileName)

Description: The CallEnableInfoLogging operation starts logging informational

messages to a file.

Arguments:

 fileName – The name of the file to save informational messages to.

Return Value: Returns true if the informational log is properly initiated.

3.2.33 CallDisableInfoLogging

Signature: bool CallDisableInfoLogging()

37

Description: The CallEnableInfoLogging operation stops logging informational

messages to a file.

Arguments: none.

Return Value: Returns true if the informational log is stopped.

3.2.34 CallHasInfoMsgs

Signature: bool CallHasInfoMsgs()

Description: The CallHasInfoMsgs operation determines whether any

informational messages have been sent to the user interface or not.

Arguments: none.

Return Value: Returns true if the dll has buffered any informational messages.

The operation returns false if the critical message buffer is empty.

3.2.35 CallFetchInfoMsg

Signature: bool CallFetchInfoMsg(MsgType& msg)

Description: The CallFetchInfoMsg operation retrieves the oldest informational

message in the informational message buffer

Arguments:

 msg – A MsgType struct containing the informational message as it was

stored in the critical message buffer. This is an output parameter and will

be populated by calling the operation.

Return Value: Returns true if the operation successfully retrieves a message.

False otherwise.

3.2.36 CallEnableIOLogging

Signature: bool CallEnableIOLogging(

const char* fileName)

Description: The CallEnableIOLogging operation starts logging IO messages to

a file.

38

Arguments:

 fileName – The name of the file to save IO messages to.

Return Value: Returns true if the IO log is properly initiated.

3.2.37 CallDisableIOLogging

Signature: bool CallDisableIOLogging()

Description: The CallEnableIOLogging operation stops logging IO messages to

a file.

Arguments: none.

Return Value: Returns true if the IO log is stopped.

3.2.38 CallHasIOMsgs

Signature: bool CallHasIOMsgs()

Description: The CallHasIOMsgs operation determines whether a new IO update

has been provided to the User Interface since the last time one was read.

Arguments: none.

Return Value: Returns true if a new IO Update has been posted since the last

time CallHasIOMsgs was called. The operation returns false otherwise.

3.2.39 CallFetchIOMsg

Signature: bool CallFetchIOMsg(IoUpdateData& data)

Description: The CallFetchIOMsg operation retrieves the most recent IO update

from the IO Update buffer.

Arguments:

 data – An IoUpdateData structure containing the values of all inputs and

outputs.

Return Value: Returns true if the operation successfully retrieves the last IO

Update value. The operation returns false otherwise.

39

3.3 Initializing and using the dll

The UiWinInterface dynamically linked library provides simplifies the process of

developing a user interface by performing all of the work needed to send commands to,

and receive commands from the CSPS.

3.3.1 C++ User Interfaces

C++ user interfaces must load the library at run time, declare function pointers,

and map all of the functions provided by the dll to the pointers. To simplify this process,

UiWinInterface.h has been provided that performs the majority of these operations itself.

It declares all of the function pointer types, declares instances of those types, and

provides the InitializeOps function. InitializeOps retrieves the process address of each

operation from the dll and maps them to the function pointers it declared. The developed

user interface must still load the library (by using the Windows LoadLibrary operation

for example), and pass this loaded library to the InitializeOps operation. Once

InitializeOps has successfully performed the function mapping, one needs only to make

the call on the functions defined.

The first function called MUST be InitDll. This operation starts the threads that

must run in the dll and establishes all of the classes needed. Only after InitDll has been

called on the API can any other operations be successfully performed.

See the SimpleUi.exe project for an example of how to load and use the provided

UiWinInterface library.

3.3.2 Visual Basic

Visual basic user interfaces may still make use of the dll, but cannot use the

UiWinInterface.h InitializeOps function. Visual basic requires dll functions to be

declared using the Lib command. Each structure must also be defined in terms that visual

basic can use. This has been provided for future UI developers in the included

GlobalModule.bas module file under the ExampleUI.vbp project. This file declares all

necessary structures and functions. By including this module, any visual basic project

has full access to the API.

40

As with C++ User Interfaces, the first function called MUST be InitDll. Only

after InitDll has been called on the API can any other operations be successfully

performed.

3.4 Logging

When enabled, log messages and updates are sent to the user interface API by the

CSPS. These messages cannot simply be forced down to the User Interface as some

systems such as Visual Basic do not allow outside threads to access their code. Instead

the API will buffer or store these messages. It is the responsibility of the UI designer to

determine when to fetch buffered messages from the API. The UI Designer should

consider using a separate thread to process log messages and updates.

3.5 SimpleUI

SimpleUI is a fully functional example command line User Interface. It provides

access to every feature provided by the CSPS Framework. The command interface of

SimpleUI is as follows:

 quit – Exits Program

 start – Starts Execution

 stop – Stops execution

 isready – Determines if the system is ready to start

 requestio – Requests a single IO update

 setplantss – Sets a plant using state space equations

 setplantzpk – Sets a plant using zero-pole-gain notation

 setplantzpkmatrix – Sets a plant using a matrix of zpk defined transfer functions.

 setplanttf – Sets a plant using a transfer function.

 setplanttfmatrix – Sets a plant using a matrix of transfer functions.

 setplantnonlinear – Sets a plant using nonlinear equations

 getplant – Retrieves a plant in state space notation.

 saveplant – Saves the plant to a file

 loadplant – Loads a plant

 clearplant – Clears the current plant.

 setinitcond – Sets the initial conditions

 setdmethod – Sets the Discretization method

 setumethod – Sets the IO update method

41

 addort – Adds a pseudo port to the system

 removeport – Removes a pseudo port from the system by name.

 getports – Retrieves the current port mapping.

 clearports – Clears the port mapping

 saveports – Saves the port mapping to a file

 loadports – Loads a port mapping

 getphyports – Retrieves physical port information

 schedphyport – Schedules the update period for a physical port

 logio – Logs IO data to a file

 stopiolog – Stops logging IO data

 chkiodata – Checks to see if IO Data is available

 fetchiodata – Fetches IO data

 logcrit – Logs critical data to a file

 stopcritlog – Stops critical logging

 chkcritmsg – Checks to see if any critical messages have been posted.

 fetchcritmsg – Fetches the oldest critical message

 loginfo – Starts informational message logging

 stopinfolog – Stops informational message logging

 chkinfomsg – Checks to see if any informational messages have been posted.

 fetchinfomsg – fetches the oldest informational message.

3.6 ExampleUI

Like SimpleUi.exe, ExampleUI is an example of a User Interface. ExampleUI is

a visual basic GUI that uses the UiWinInterface.dll library to communicate with the

CSPS Framework. It provides access to each of the operations provided by the

framework to demonstrate how to use each one.

42

Figure 3: ExampleUI Operational Screen

The ExampleUI main window is broken into four main sections. At the far left are

the system control buttons. These allow the user to start, stop, and otherwise configure

the system. At the top right is the Specification frame. This section allows the user to set

the plant and review the physical ports available. The Pseudo Port Mapping frame allows

users to add, remove, load, save, or clear the current pseudo port mapping. Pseudo ports

appear by name in the Pseudo Port list. Clicking on a name brings up information about

the particular pseudo port in the Port Info window. The bottom of the window consists of

the log information. All log messages are displayed in each of the specified windows.

The buttons allow the user to start and stop logging this data to text files.

43

4. Porting to a new Data Acquisition Device

The provided Win32 version of the Control System Plant Simulator‟s

Computational Kernel has been built for use with the Data Translations DT-9810 data

acquisition device. The RTX version has been built for use with the simulated interface.

Future users will have to port some of the code in the Computational Kernel in order to

accommodate other data acquisition devices.

Individual data acquisition devices are represented in the code by the Physical

Port Cache. PhysicalPortCache.h and PhysicalPortCache.cpp define a parent class from

which individually developed PhysicalPortCache objects must inherit.

Individual interfaces on the data acquisition device are represented in the code by

Physical Ports. PhysicalPort.h and PhysicalPort.cpp define a parent class from which

individually developed PhysicalPort objects must inherit.

Porting to a new data acquisition device involves creating child classes for both

the PhysicalPortCache and the PhysicalPort that properly represent the device, and

instantiating the new PhysicalPortCache object in the port manager. Each PhysicalPort

child class must implement a specific ReadValue and WriteValue operation that handles

physically reading from or writing to the interface on the data acquisition device. The

PhysicalPortCache child object must implement specific PopulatePortCache operations

that will instantiate the new PhysicalPort child class objects that represent the interfaces

on the data acquisition device. The constructor of the PhysicalPortCache child object

must call this operation.

The PortManager owns the PhysicalPortCache and must instantiate the specific

child class upon construction. This code will have to be modified to instantiate the new

PhysicalPortCache once it has been developed.

44

5. Porting Operating System Abstraction Layer

As noted previously, the Control System Plant Simulator is composed of three

completely separate process spaces. The Computation Kernel is the lowest level process

that handles simulation of the plant and physical IO. The Win32 process (or Kernel) is

the main process that manages all data and launches the other two processes. Finally, the

User Interface is a user developed process that collects input from the user to drive the

system.

These process spaces do not need to be launched using the same operating system.

A typical RTX program is usually split into two processes: a Win32 process and an RTX

process. The provided Control System Plant Simulator has been designed for use in both

Windows and RTX. This was accomplished by abstracting away a number of operating

system objects including the semaphore, files, shared memory, and threads. Wrapper

classes were provided for each of these elements that can be ported to any operating

system desired. If the operating system changes, only the wrapper classes would need to

be altered to make the new OS level calls.

There is, however, an additional level of complexity. Some processes in the

CSPS may require the use of both operating systems at once. For example, the Kernel

must communicate with both the Computational Kernel and the User Interface process.

Two versions of the CSPS have been provided: one where all processes operate under

Windows, and one where the Computation Kernel operates in RTX. This means that the

Kernel must use RTX operating system calls to communicate with the Computation

Kernel, and Windows operating system calls to communicate with the User Interface.

To manage such a problem, each operating system abstraction class features two

implementations for each function call. Which implementations are actually compiled is

handled by a number of precompiler definitions defined in the LocalDefinitions.h header

for each project. If both operations are available, the CSPS selects which one to use by

setting the compInterface flag at compile time. If only one implementation is available,

the flag is ignored.

45

To port these operations to another OS, replace one or both of the operating

system interfaces with code that performs the same function in the new operating system.

Once that is complete, a new LocalDefinitions.h file will have to be created that sets the

appropriate flags for the processes affected.

46

6. Additional Tools

Any additional tools or materials are described in the sections that follow.

6.1 The SimInterface Tool

One of the provided versions of the CSPS runs on Ardence RTX real-time

extensions for windows. This RTX port of the CSPS cannot interoperate with the Data

Translations DT-9812 data acquisition device because the device connects to the

computer through a USB interface. An RTX Computation Kernel was written, but could

only be simulated against a set of simulated physical ports. The SimInterface program is

a command line program that provides these simulated physical ports. It is a console

application that allows a user to define physical ports for the system, set values on those

ports at runtime, and monitor output values from the CSPS system. Note that if this

program is to be used, it MUST be launched and initialized before the CSPS is initiated.

CSPS systems compiled with SimInterface as their physical port system look for the

shared memory provided by SimInterface at boot time.

6.1.1 Configuring SimInterface

SimInterface must be provided a set of physical ports to simulate at run time.

This may be accomplished manually, or through a script. Users who decide to configure

the physical ports manually will be provided a series of questions by the application

including how many ports the interface will have, and information on the properties of

each of those ports. Users may also create a script configuration file to use when

configuring the SimInterface. The format of this file is as follows:

IN_PORT

<Name of input port 1>

<Port 1’s type, either ANALOG, BIT, BYTE, WORD, or LONG>

<Port 1’s initial value>

IN_PORT

<Name of input port 2>

47

…

OUT_PORT

<Name of output port 1>

< Port 1’s type, either ANALOG, BIT, BYTE, WORD, or LONG>

< Output Port 1’s initial value>

…

PERIOD

Default update period for all physical ports

END

6.1.2 Running SimInterface

Once configured, SimInterface provides the full port listing to allow the user to

review the configuration.

Figure 4: SimInterface Initialization

 SimInterface may be run in two modes: manually or by script.

6.1.2.1 Manual Mode

If the user selects Manual mode execution, SimInterface will do nothing and

ignore all incoming values (Plant outputs) until the user provides a prompt. The

SimInterface tool responds to the following prompts:

 s - Start monitoring plant output.

 p - Pause plant output monitoring

 v - Set the value of a Physical Port

 q - Quit

48

6.1.2.2 Script Mode

The SimInterface can also set and clear data values according to a script. The

script will cause the SimInterface to update physical port values automatically. When

running a script, the user will be prompted to indicate how many iterations through the

script are desired. The script will be run the specified number of times and the program

will close. The script is defined as a text file formatted as follows:

WAIT

<Wait time in milliseconds>

SET_PORT

<port name>

<value to set>

SET_PORT

<second port name>

<second value to set>

…

END_WAIT Indicates that all port settings for this

‘wait’ have completed

WAIT

<wait time in milliseconds>

…

END_WAIT

END_SCRIPT

49

